Welcome to the Neurogenetics Lab

the lab

Genetics of Neurodevelopmental Disorders

Our research group aims to identify and characterize genes involved in human neurodevelopmental and psychiatric disorders as a first step towards understanding the mechanism of disease. Our studies are focused on the genetics of autism and schizophrenia. We are using a combination of genetic and functional genomics methods to identify new genes and molecular pathways that contribute to those disorders. We also study the influence of genetic variations on gene expression as a way to understand how genetic variations may lead to neurodevelopmental disorders.

Recent Publications

Value-complexity tradeoff explains mouse navigational learning

Amir, N., et al. Value-complexity tradeoff explains mouse navigational learning. PLoS Comput Biol 16, e1008497 (2020).Abstract
We introduce a novel methodology for describing animal behavior as a tradeoff between value and complexity, using the Morris Water Maze navigation task as a concrete example. We develop a dynamical system model of the Water Maze navigation task, solve its optimal control under varying complexity constraints, and analyze the learning process in terms of the value and complexity of swimming trajectories. The value of a trajectory is related to its energetic cost and is correlated with swimming time. Complexity is a novel learning metric which measures how unlikely is a trajectory to be generated by a naive animal. Our model is analytically tractable, provides good fit to observed behavior and reveals that the learning process is characterized by early value optimization followed by complexity reduction. Furthermore, complexity sensitively characterizes behavioral differences between mouse strains.

Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade

Winek, K., et al. Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc Natl Acad Sci U S A (2020).Abstract
Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14 monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14 monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a "changing of the guards" between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.

Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice

Suliman-Lavie, R., et al. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice. Nat Commun 11, 5836 (2020).Abstract
Several genes implicated in autism spectrum disorder (ASD) are chromatin regulators, including POGZ. The cellular and molecular mechanisms leading to ASD impaired social and cognitive behavior are unclear. Animal models are crucial for studying the effects of mutations on brain function and behavior as well as unveiling the underlying mechanisms. Here, we generate a brain specific conditional knockout mouse model deficient for Pogz, an ASD risk gene. We demonstrate that Pogz deficient mice show microcephaly, growth impairment, increased sociability, learning and motor deficits, mimicking several of the human symptoms. At the molecular level, luciferase reporter assay indicates that POGZ is a negative regulator of transcription. In accordance, in Pogz deficient mice we find a significant upregulation of gene expression, most notably in the cerebellum. Gene set enrichment analysis revealed that the transcriptional changes encompass genes and pathways disrupted in ASD, including neurogenesis and synaptic processes, underlying the observed behavioral phenotype in mice. Physiologically, Pogz deficiency is associated with a reduction in the firing frequency of simple and complex spikes and an increase in amplitude of the inhibitory synaptic input in cerebellar Purkinje cells. Our findings support a mechanism linking heterochromatin dysregulation to cerebellar circuit dysfunction and behavioral abnormalities in ASD.

Expansion of the GRIA2 phenotypic representation: a novel de novo loss of function mutation in a case with childhood onset schizophrenia

Alkelai, A., et al. Expansion of the GRIA2 phenotypic representation: a novel de novo loss of function mutation in a case with childhood onset schizophrenia. J Hum Genet (2020).Abstract
Childhood-onset schizophrenia (COS) is a rare form of schizophrenia with an onset before 13 years of age. There is rising evidence that genetic factors play a major role in COS etiology, yet, only a few single gene mutations have been discovered. Here we present a diagnostic whole-exome sequencing (WES) in an Israeli Jewish female with COS and additional neuropsychiatric conditions such as obsessive-compulsive disorder (OCD), anxiety, and aggressive behavior. Variant analysis revealed a de novo novel stop gained variant in GRIA2 gene (NM_000826.4: c.1522 G > T (p.Glu508Ter)). GRIA2 encodes for a subunit of the AMPA sensitive glutamate receptor (GluA2) that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. GluA2 subunit mutations are known to cause variable neurodevelopmental phenotypes including intellectual disability, autism spectrum disorder, epilepsy, and OCD. Our findings support the potential diagnostic role of WES in COS, identify GRIA2 as possible cause to a broad psychiatric phenotype that includes COS as a major manifestation and expand the previously reported GRIA2 loss of function phenotypes.
Google Scholar